Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of Disc Cavity Leakage Flow and Hub Endwall Contouring in a Linear Rotor Cascade

[+] Author Affiliations
Ryan D. Erickson, Terrence W. Simon

University of Minnesota, Minneapolis, MN

Luzeng Zhang, Hee-Koo Moon

Solar Turbines Incorporated, San Diego, CA

Paper No. GT2011-46700, pp. 1769-1780; 12 pages
  • ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
  • Volume 5: Heat Transfer, Parts A and B
  • Vancouver, British Columbia, Canada, June 6–10, 2011
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5465-5
  • Copyright © 2011 by ASME


An experimental study is carried out in a stationary linear cascade which simulates a turbine rotor to compare the thermal performance of two new axisymmetric endwall contour geometries. Measurements of endwall adiabatic film cooling effectiveness and near-endwall passage temperature fields are made for this purpose. In addition to documenting endwall contouring effects, a range of disc cavity leakage flow rates is investigated. This information is meant to quantify, over the range tested, the benefits and penalties of introducing leakage flow into the passage using the designated endwall contouring. Special attention is paid to determine whether the endwall curvature has any effect on the interaction between mainstream and secondary flows within the passage. Results indicate improved thermal performance when strong endwall curvature exists near the blade leading edge. The strong curvature causes cavity leakage flow to remain closer to the endwall, thereby increasing cooling effectiveness.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In