0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Comparison of Heat Transfer and Pressure Drop in Gas Turbine Blade Cooling Channels With Dimples and Rib-Turbulators

[+] Author Affiliations
R. S. Amano, Krishna S. Guntur, Sourabh Kumar, Jose Martinez Lucci

University of Wisconsin-Milwaukee, Milwaukee, WI

Paper No. GT2011-45277, pp. 1137-1143; 7 pages
doi:10.1115/GT2011-45277
From:
  • ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
  • Volume 5: Heat Transfer, Parts A and B
  • Vancouver, British Columbia, Canada, June 6–10, 2011
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5465-5
  • Copyright © 2011 by ASME

abstract

In order to enhance the performance of a gas turbine and to maintain the blade material within operating temperature range, cooling channels are made within the blade materials that extract the heat. The walls of these cooling channels are usually enhanced with some sort of turbulence generators — ribs and dimples being the most common. While both the geometries provide improvement in enhancing the heat transfer, dimples usually have a lower pressure drop. It is essential to improve the heat transfer rate with a minimal pressure loss. In this study, the heat transfer and pressure loss are determined numerically and combined to show the effect of both in channels with ribs and dimples on one wall of the channel. Similar geometric and boundary conditions are used for both the turbulators. Reynolds numbers of 12,500 and 28,500, based on the hydraulic diameter are used for the study. The Reynolds-Stress Model was used for all the computations as a turbulence model by employing Fluent.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In