Full Content is available to subscribers

Subscribe/Learn More  >

Turbulence and Heat Transfer Measurements in an Inclined Large Scale Film Cooling Array: Part II—Temperature and Heat Transfer Measurements

[+] Author Affiliations
Douglas R. Thurman

US Army Research Laboratory - Glenn Research Center, Cleveland, OH

Lamyaa A. El-Gabry

The American University in Cairo, New Cairo, Egypt

Philip E. Poinsatte, James D. Heidmann

NASA Glenn Research Center, Cleveland, OH

Paper No. GT2011-46498, pp. 551-558; 8 pages
  • ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
  • Volume 5: Heat Transfer, Parts A and B
  • Vancouver, British Columbia, Canada, June 6–10, 2011
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5465-5
  • Copyright © 2011 by ASME


The second of a two-part paper, this study focuses on the temperature field and surface heat transfer measurements on a large-scale models of an inclined row of film cooling holes. Detailed surface and flow field measurements were taken and presented in Part I. The model consists of three holes of 1.9-cm diameter that are spaced 3 hole diameters apart and inclined 30° from the surface. Additionally, another model with an anti-vortex adaptation to the film cooling holes is also tested. The coolant stream is metered and cooled to 20°C below the mainstream temperature. A thermocouple is used to obtain the flow temperatures along the jet centerline and at various streamwise locations. Steady state liquid crystal thermography is used to obtain surface heat transfer coefficients. Results are obtained for blowing ratios of up to 2 in order to capture off-design conditions in which the jet is lifted. Film cooling effectiveness values of 0.4 and 0.15 were found along the centerline for blowing ratios of 1 and 2 respectively. In addition, an anti-vortex design was tested and found to have improved film effectiveness. This paper presents the detailed temperature contours showing the extent of mixing between the coolant and freestream and the local heat transfer results.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In