0

Full Content is available to subscribers

Subscribe/Learn More  >

Full-Coverage Film Cooling: Film Effectiveness and Heat Transfer Coefficients for Dense and Sparse Hole Arrays at Different Blowing Ratios

[+] Author Affiliations
Matt Goodro, Phil Ligrani

University of Oxford, Oxford, UK

Mike Fox, Hee-Koo Moon

Solar Turbines Inc., San Diego, CA

Paper No. GT2011-45389, pp. 195-209; 15 pages
doi:10.1115/GT2011-45389
From:
  • ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
  • Volume 5: Heat Transfer, Parts A and B
  • Vancouver, British Columbia, Canada, June 6–10, 2011
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5465-5
  • Copyright © 2011 by ASME

abstract

Experimental results are presented for a full coverage film cooling arrangement which simulates a portion of a gas turbine engine, with appropriate streamwise static pressure gradient and varying blowing ratio along the length of the contraction passage which contains the cooling hole arrangement. Film cooling holes are sharp-edged, streamwise inclined at 20° with respect to the liner surface, and are arranged with a length to diameter ratio of 8.35. The film cooling holes in adjacent streamwise rows are staggered with respect to each other. Data are provided for turbulent film cooling, contraction ratios of 1 and 4, blowing ratios (at the test section entrance) of 2.0, 5.0, and 10.0, coolant Reynolds numbers Refc from 10,000 to 12,000, freestream temperatures from 75°C to 115°C, a film hole diameter of 7 mm, and density ratios from 1.15 to 1.25. Changes to X/D and Y/D, non-dimensional streamwise and spanwise film cooling hole spacings, with Y/D of 3, 5, and 7, and with X/D of 6 and 18, are considered. For all X/D = 6 hole spacings, only a slight increase in effectiveness (local, line-averaged, and spatially-averaged) values are present as the blowing ratio increases from 2.0 to 5.0, with no significant differences when the blowing ratio increases from 5.0 to 10.0. This lack of dependence on blowing ratio indicates a condition where excess coolant is injected into the mainstream flow, a situation not evidenced by data obtained with the X/D = 18 hole spacing arrangement. With this sparse array configuration, local and spatially-averaged effectiveness generally increase continually as the blowing ratio becomes larger. Line-averaged and spatially-averaged heat transfer coefficients are generally higher at each streamwise location, also with larger variations with streamwise development, with the X/D = 6 hole array, compared to the X/D = 18 array.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In