Full Content is available to subscribers

Subscribe/Learn More  >

Impact on Adiabatic Film Cooling Effectiveness Using Internal Cyclone Cooling

[+] Author Affiliations
Andreas Lerch, Heinz-Peter Schiffer, Daniela Klaubert

Technische Universität Darmstadt, Darmstadt, Germany

Paper No. GT2011-45120, pp. 45-56; 12 pages
  • ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
  • Volume 5: Heat Transfer, Parts A and B
  • Vancouver, British Columbia, Canada, June 6–10, 2011
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5465-5
  • Copyright © 2011 by ASME


The internal heat transfer of turbine blades can be augmented using cyclone cooling, but the consequential impact on the external film cooling may be significant. To determine these effects, the distribution of adiabatic film cooling effectiveness was measured on the surface of a symmetrical blade model containing a cylindrical leading-edge channel. This channel feeds one row, respectively two opposite rows, of eight cooling holes each. Inside this channel two different types and directions of swirl are generated. The resulting adiabatic effectiveness distributions, which are measured using the calibrated ammonia diazo technique, are compared to those measured with a channel flow without swirl (datum configuration). The operating points are defined by blowing ratio (0.6–1.0) and film cooling discharge coefficient (20%–50%). A high full-range resolution over the adiabatic effectiveness is achieved using a weighting average method with multiple experiments per operating point. The lateral-averaged adiabatic effectiveness is presented up to 30 diameters downstream of the cooling holes. These effectiveness values show a high dependency on the configurations and reach values of about 0.3 to 2 times the reference configuration values. This is due to the strong variation of the flow structure inside the cooling holes. PIV-measurements and basic numerical simulations of the channel flow structure and dynamic pressure measurements at the cooling hole exits are carried out to support the results of film cooling effectiveness.

Copyright © 2011 by ASME
Topics: Cooling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In