Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Experimental Conditions on Gas Core Length and Downward Velocity of Free Surface Vortex in Cylindrical Vessel

[+] Author Affiliations
Hideaki Monji, Tatsuya Shinozaki

University of Tsukuba, Tsukuba, Japan

Hideki Kamide, Takaaki Sakai

Japan Atomic Energy Agency, Ibaraki, Japan

Paper No. ICONE16-48670, pp. 691-699; 9 pages
  • 16th International Conference on Nuclear Engineering
  • Volume 3: Thermal Hydraulics; Instrumentation and Controls
  • Orlando, Florida, USA, May 11–15, 2008
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-4816-7 | eISBN: 0-7918-3820-X
  • Copyright © 2008 by ASME


This paper deals with characteristics of surface vortex in a cylindrical vessel. One of the characteristics is a gas core length which is important to estimate the onset condition of the gas entrainment but influenced easily by the experimental condition. In the experiment using water, the effects of the water temperature, water level and the surface tension on the gas core length were investigated. The onset condition of the gas entrainment is sometimes estimated by using the Burgers vortex model but the real flow in the vessel is different from the model. The velocity fields were measured by PIV and the velocity gradient of the downward flow was discussed. The proper flow conditions for the Burgers vortex model are a high water level and a high flow rate.

Copyright © 2008 by ASME
Topics: Vortices , Vessels



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In