0

Full Content is available to subscribers

Subscribe/Learn More  >

A Way to Visualise Heat Transfer in 3D Unsteady Flows

[+] Author Affiliations
M. F. M. Speetjens

Eindhoven University of Technology, Eindhoven, The Netherlands

Paper No. HT2009-88234, pp. 871-879; 9 pages
doi:10.1115/HT2009-88234
From:
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 3: Combustion, Fire and Reacting Flow; Heat Transfer in Multiphase Systems; Heat Transfer in Transport Phenomena in Manufacturing and Materials Processing; Heat and Mass Transfer in Biotechnology; Low Temperature Heat Transfer; Environmental Heat Transfer; Heat Transfer Education; Visualization of Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4358-1 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

Heat transfer in fluid flows traditionally is examined in terms of temperature field and heat-transfer coefficients. However, heat transfer may alternatively be considered as the transport of thermal energy by the total convective-conductive heat flux in a way analogous to the transport of fluid by the flow field. The paths followed by the total heat flux are the thermal counterpart to fluid trajectories and facilitate heat-transfer visualisation in a similar manner as flow visualisation. This has great potential for applications in which insight into the heat fluxes throughout the entire configuration is essential (e.g. cooling systems, heat exchangers). To date this concept has been restricted to 2D steady flows. The present study proposes its generalisation to 3D unsteady flows by representing heat transfer as the 3D unsteady motion of a virtual fluid subject to continuity. The heat-transfer visualisation is provided with a physical framework and demonstrated by way of representative examples. Furthermore, a fundamental analogy between fluid motion and heat transfer is addressed that may pave the way to future heat-transfer studies by well-established geometrical methods from laminar-mixing studies.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In