0

Full Content is available to subscribers

Subscribe/Learn More  >

CRAC Heat Exchanger Response to Step Change in Chilled Water Flowrate

[+] Author Affiliations
Shawn P. Shields, Yogendra K. Joshi

Georgia Institute of Technology, Atlanta, GA

Michael Patterson

Intel, Santa Clara, CA

Michael Meakins

Intel, Portland, OR

Paper No. HT2009-88232, pp. 809-816; 8 pages
doi:10.1115/HT2009-88232
From:
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 3: Combustion, Fire and Reacting Flow; Heat Transfer in Multiphase Systems; Heat Transfer in Transport Phenomena in Manufacturing and Materials Processing; Heat and Mass Transfer in Biotechnology; Low Temperature Heat Transfer; Environmental Heat Transfer; Heat Transfer Education; Visualization of Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4358-1 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

This paper presents experimental data showing the response of a computer room air conditioning unit (CRAC) to chilled water (CHW) pump restart. The data are offered to improve and develop modeling of cooling equipment restart events following data center power failure. There are estimates that power failures will increase and limits on availability will affect data center operations at more than 90 percent of all companies over the next five years. Because providing backup power to cooling equipment increases data center first cost, it is important to have accurate models for cooling events and processes following power failure that help predict server inlet temperatures during the transient phase caused by a power failure. Since power density of computing equipment continues to rise, the temperature rise of air within the data center has been predicted to rise more quickly to an unacceptable level, increasing concern. Accurate models of CRAC response to pump restart can aid in data center cooling design, backup power infrastructure provisioning, and even compute equipment selection by predicting the air supply temperature after the generator provides power to the chilled water pump. Previous transient models include zonal models with large time scales and CFD/HT models with boundary conditions developed for steady state. These models can be improved by comparison with experimental data. The experiment consists of measuring the response of the CRAC heat exchanger to the step change in CHW flow rate upon pump restart. Inlet and outlet temperatures of both CHW and air were measured, as well CHW flow rate. A point measurement of air at the CRAC fan outlet was also taken to verify that airflow remained relatively constant. Outlet temperatures from the CRAC follow a first order response curve; it is found that the CRAC under consideration has fan outlet temperature time constant of 10 seconds. A delay of 20 seconds is observed between the fan outlet temperature response and the CHW return temperature response.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In