0

Full Content is available to subscribers

Subscribe/Learn More  >

SCWR Rod Bundle Thermal Analysis by a CFD Code

[+] Author Affiliations
M. Sharabi, W. Ambrosini, N. Forgione

Università di Pisa, Pisa, Italy

S. He

University of Aberdeen, Aberdeen, UK

Paper No. ICONE16-48501, pp. 495-501; 7 pages
doi:10.1115/ICONE16-48501
From:
  • 16th International Conference on Nuclear Engineering
  • Volume 3: Thermal Hydraulics; Instrumentation and Controls
  • Orlando, Florida, USA, May 11–15, 2008
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-4816-7 | eISBN: 0-7918-3820-X
  • Copyright © 2008 by ASME

abstract

The present paper describes the results of the application of the FLUENT code in the analysis of rod bundle configurations proposed for high pressure supercritical water reactors. The model considers a 1/8 slice of a rod bundle. The details from CFD calculations offer predictions of the circumferential clad surface temperature and of the effect of axial power distribution on the mass exchange between subchannels and on the maximum surface rod temperature. Geometry and boundary conditions are adopted from a previous work that made use of subchannel programs, allowing for a direct comparison between the two techniques. Both the standard k-ε model and the Reynolds stress transport model are used. Conclusions are drawn about the present capabilities in predicting heat transfer behavior in fuel rod bundles proposed for supercritical water reactors.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In