0

Full Content is available to subscribers

Subscribe/Learn More  >

Computer Assisted Simulation Model in Cryosurgery for Prostate Tumor

[+] Author Affiliations
Chih-Wei Chen, Hong-Sen Kou

Tatung University, Taipei, Taiwan

Hsueh-Erh Liu

Chang Gung University, Tao-Yuan, Taiwan

Cheng-Keng Chuang, Li-Jen Wang

Chang Gung Memorial Hospital, Tao-Yuan, Taiwan

Paper No. HT2009-88575, pp. 741-748; 8 pages
doi:10.1115/HT2009-88575
From:
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 3: Combustion, Fire and Reacting Flow; Heat Transfer in Multiphase Systems; Heat Transfer in Transport Phenomena in Manufacturing and Materials Processing; Heat and Mass Transfer in Biotechnology; Low Temperature Heat Transfer; Environmental Heat Transfer; Heat Transfer Education; Visualization of Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4358-1 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

Cryosurgery is also called as cryoablation or cryoleision. The third generation of cryo-machine use argon gas for cooling and helium for rewarming to destroy cancer cells. The probes may be put into the tumor during surgery or through the skin (percutaneously). After cryosurgery, the frozen tissue thaws and is either naturally absorbed by the body (for internal tumors), or it dissolves and forms a scab (for external tumors). The main purpose of this paper is to establish a preliminary computer assisted simulation in prostate tumor cryosurgery. A radiologist and an urologist in a medical center in addition to the engineering specialist from the university participated in this interdisciplinary research program. The first step of this simulation protocol is to trim hundreds of two-dimensional medical imaging photos from a patient through the imaging reconstructive software into building a three-dimensional solid modeling. The image data for each patient can be obtained from the x-ray computed tomography (CT), or magnetic resonance imaging (MRI) in the imaging department of hospital. It has successfully built up the related knowledge to overcome the complicacy between the medical imaging modalities and engineering graphic solid modeling with high resolution. It is worthy to mention here that the present solid modeling of prostate can demonstrate the variable diameters and courses of the prostate urethra in vivo. The second step focuses on thermal calculation. So far, there has been no existing commercial software for the specific purpose of the bioheat transfer problem. Hence, user subroutines must be added to the existing commercial software to simulate the clinical situation of cryosurgery. For example, the occurrence of phase change during some specified temperature range and the latent heat of fusion are also incorporated into bio-heat transfer model. It has successfully incorporated bioheat transfer model into the software program to fit the reality in thermal medicine. The third step supplies the data and knowledge concerned with the position of a tumor and the related mechanism of metabolism of living tissue and vessels. The number of probes, the position of each probe, and the operating time of each probe will be explored to ensure a complete killing of the tumor tissue while saving as much healthy surrounding tissue as possible. In this study, the three-dimensional transient temperature distributions based on cryosurgery for prostate tumors have been performed for several cases to find the optimal operating conditions. Different cryoprobes with different freezing time are considered to find the temperature distribution. The simulation results for cryosurgery of prostate tumors will be supplied for practicing physicians as reference to greatly improve the effectiveness of cryosurgery.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In