Full Content is available to subscribers

Subscribe/Learn More  >

Computational Fluid Dynamics Modeling of Two-Phase Flow Topologies in a Boiling Water Reactor Fuel Assembly

[+] Author Affiliations
Adrian Tentner

Argonne National Laboratory, Argonne, IL

Simon Lo, Andrew Splawski

CD-adapco Ltd., London, UK

Andrey Ioilev, Vladimir Melnikov, Maskhud Samigulin, Vasily Ustinenko

Russian Federal Nuclear Center, Sarov, Russia

Sufia Melnikova

Sarov Laboratories, Sarov, Russia

Paper No. ICONE16-48442, pp. 431-441; 11 pages
  • 16th International Conference on Nuclear Engineering
  • Volume 3: Thermal Hydraulics; Instrumentation and Controls
  • Orlando, Florida, USA, May 11–15, 2008
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-4816-7 | eISBN: 0-7918-3820-X
  • Copyright © 2008 by ASME and UChicago Argonne, LLC, Operator of Argonne National Laboratory


This paper presents recent advances in the development and validation of the two-phase flow topology models implemented in CFD-BWR, an advanced Computational Fluid Dynamics (CFD) computer code that allows the detailed analysis of the two-phase flow and heat transfer phenomena in Boiling Water Reactor (BWR) fuel assemblies under various operating conditions. The local inter-phase surface topology plays a central role in determining the mass, momentum, and energy exchanges between the liquid and vapor phases and between the two-phase coolant and the fuel pin cladding. The paper describes the topology map used to determine the local inter-phase surface topology and the role of the local topology in determining the inter-phase mass, momentum, and energy transfer. It discusses the relationship between the local interphase surface topology and the traditional channel flow regimes and presents results of experiment analyses in which computed local topologies are aggregated into flow regimes and compared with experimental observations.

Copyright © 2008 by ASME and UChicago Argonne, LLC, Operator of Argonne National Laboratory



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In