Full Content is available to subscribers

Subscribe/Learn More  >

Multiscale Simulation of Nanoparticle Transport and Deposition in Fiber Matrix During a Nanofluid Filtration Process

[+] Author Affiliations
Di Su, Ronghui Ma, Liang Zhu

University of Maryland - Baltimore County, Baltimore, MD

Paper No. HT2009-88621, pp. 699-707; 9 pages
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 3: Combustion, Fire and Reacting Flow; Heat Transfer in Multiphase Systems; Heat Transfer in Transport Phenomena in Manufacturing and Materials Processing; Heat and Mass Transfer in Biotechnology; Low Temperature Heat Transfer; Environmental Heat Transfer; Heat Transfer Education; Visualization of Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4358-1 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


A multiscale model is developed to simulate filtration process for the fabrication of composite material with nanoparticle additives. The model consists of two components. One is a particle trajectory tracking model (PTTM) which can predict the deposition rate of nanoparticle on the fiber matrix in a single pore structure, and the other one is a macroscale transport model of fluid flow in porous fiber structures. The flow of the fluid in the porous media with a free moving surface is solved by using the meshless SPH method. The integrated model is used to predict the local deposition rate coefficient and the distribution of the nanoparticle concentration in the carrier fluid and on the fiber surface. We envision this as the first step of a systematic study towards to an advanced understanding of the process as well as the optimization of the operational parameters for achieving homogeneous material properties of the materials.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In