Full Content is available to subscribers

Subscribe/Learn More  >

The Applicability of NFI-1 DNB Correlation and Fluid-to-Fluid Similarities to Freon DNB Test

[+] Author Affiliations
Shumpei Kakinoki, Keizo Matsuura, Kenichi Kitagawa

Nuclear Fuel Industries Ltd., Osaka, Japan

Isao Kataoka

Osaka University, Osaka, Japan

Paper No. ICONE16-48348, pp. 361-368; 8 pages
  • 16th International Conference on Nuclear Engineering
  • Volume 3: Thermal Hydraulics; Instrumentation and Controls
  • Orlando, Florida, USA, May 11–15, 2008
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-4816-7 | eISBN: 0-7918-3820-X
  • Copyright © 2008 by ASME


Freon thermal hydraulic test is expected to be one of the workable methods to develop high thermal hydraulic performance PWR fuel. That is, high pressure water and high heat flux condition in PWR core can be substituted with lower pressure Freon and lower heat flux by applying appropriate fluid-to-fluid similarity and modeling parameters. Freon DNB tests and mixing tests were carried out against a 4×4 rod bundle configuration where R-134A flowed vertically upwardly. The tests were carried out at Freon thermal hydraulic test loop in Korea Atomic Energy Research Institute (KAERI). The spacer grid used in these tests was modeled on that of conventional PWR fuel, that is, square lattice grid with split type mixing vanes. Diameter of heater rod simulating PWR fuel rod is about 10.7mm and heating length is about 2000 mm. Freon mixing tests were carried out to estimate Turbulence Diffusivity Coefficient (TDC), which was normally used in conventional thermal hydraulic design of nuclear reactor. Freon CHF test results showed that parametric trends agreed with those of existing CHF data. To predict CHF of 4×4 rod bundle, subchannel analysis code Modified COBRA-3C and NFI-1 DNB correlation were applied. TDC value used in subchannel analysis was determined by fitting Freon mixing test data. NFI-1 DNB correlation was developed for predicting DNB heat flux in rod bundle configuration by using water CHF test results at HTRF test loop at Columbia University. The design of spacer grids used in KAERI Freon DNB test was similar to that used in water CHF test at HTRF. Water equivalent flow condition of this R-134A test was estimated using fluid-to-fluid similarities. NFI-1 DNB correlation was applied to this water equivalent condition to estimate water equivalent DNB heat flux. Then R-134A equivalent DNB heat flux was estimated reversely, and compared to Freon DNB test result. The test results were predicted well and applicability of NFI-1 DNB correlation and fluid-to-fluid similarities in 4×4 rod bundle is discussed.

Copyright © 2008 by ASME
Topics: Fluids



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In