0

Full Content is available to subscribers

Subscribe/Learn More  >

Interfacial Phenomena of Radiation-Induced and Photo-Induced

[+] Author Affiliations
Yoshio Honjo, Masahiro Furuya

Central Research Institute of Electric Power Industry, Tokyo, Japan

Tomoji Takamasa

Tokyo University of Marine Science and Technology, Tokyo, Japan

Koji Okamoto

University of Tokyo, Chiba, Japan

Paper No. ICONE16-48320, pp. 353-360; 8 pages
doi:10.1115/ICONE16-48320
From:
  • 16th International Conference on Nuclear Engineering
  • Volume 3: Thermal Hydraulics; Instrumentation and Controls
  • Orlando, Florida, USA, May 11–15, 2008
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-4816-7 | eISBN: 0-7918-3820-X
  • Copyright © 2008 by ASME

abstract

When a metal oxide is irradiated by gamma rays, the irradiated surface becomes hydrophilic. This surface phenomenon is called as radiation induced surface activation (RISA). In order to investigate radiation-induced and photo-induced hydrophilicity, the contact angles of water droplets on a titanium dioxide surface were measured in terms of irradiation intensity and time for gamma rays of cobalt-60 and for ultraviolet rays. Reciprocals of the contact angles increased in proportion to irradiation time before the contact angles reached their super-hydrophilicity state. The reciprocals of contact angles correlate well with integrated intensity by a straight line, regardless of the irradiation intensity and time. Radiation-induced and photo-induced hydrophilicity phenomena are identical to each other in this regard. In addition, an effect of ambient gas was investigated. In pure argon gas, the contact angle remains the same against the irradiation time. This clearly shows that a certain humidity in ambient gas is required to take the place of RISA hydrophilicity. A single crystal titanium dioxide (100) surface was analyzed by X-ray photoelectron spectrometry (XPS). After irradiation with gamma rays, a peak was found in the O 1s spectrum, indicating the adsorption of dissociative water to a surface 5-fold coordinate titanium site, and the formation of a surface hydroxyl group. We conclude that the RISA hydrophilicity is caused by chemisorption of the hydroxyl group on the surface.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In