0

Full Content is available to subscribers

Subscribe/Learn More  >

Flow Regime Identification in Large Diameter Pipe

[+] Author Affiliations
Pravin Sawant, Joshua Schelegel, Sidharth Paranjape, Basar Ozar, Takashi Hibiki, Mamoru Ishii

Purdue University, West Lafayette, IN

Paper No. ICONE16-48311, pp. 341-351; 11 pages
doi:10.1115/ICONE16-48311
From:
  • 16th International Conference on Nuclear Engineering
  • Volume 3: Thermal Hydraulics; Instrumentation and Controls
  • Orlando, Florida, USA, May 11–15, 2008
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-4816-7 | eISBN: 0-7918-3820-X
  • Copyright © 2008 by ASME

abstract

Air-water vertical two-phase flow experiments were performed in a 0.15 m diameter and 4.4 m long test section. Superficial liquid velocity was varied from 0.05 m/s to 2.0 m/s and superficial gas velocity was varied to obtain the area averaged void fraction range of 0.1 to 0.7. Exit pressure was close to the atmospheric pressure. In order to study the development of flow structure over the length of test section, area averaged void fraction was measured using impedance meters at four different measuring ports. Pressure drop was also measured between these ports. Since the temporal variation of void fraction signal obtained from the impedance meter and its distribution are characteristic of the flow regime, a Cumulative Probability Distribution Function (CPDF) of the void fraction signal was utilized for the identification of flow regime at each port. The CPDFs of the impedance probe void fraction signal were supplied as an input to the Kohonen Self Organized neural network or the Self Organized Map (SOM) for the identification of the patterns by employing self organized neural network technique. The three flow regimes identified by the neural network are subjectively named as bubbly flow, cap-bubbly flow and cap-turbulent flow.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In