Full Content is available to subscribers

Subscribe/Learn More  >

The Role of Aperture in the Extraction of Functional Components From Plant Materials

[+] Author Affiliations
Qianqian Di, Junhong Yang, Jun Zhao

Tianjin University, Tianjin, China

Liqiu Wang

The University of Hong Kong, Hong Kong, China

Paper No. HT2009-88388, pp. 661-666; 6 pages
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 3: Combustion, Fire and Reacting Flow; Heat Transfer in Multiphase Systems; Heat Transfer in Transport Phenomena in Manufacturing and Materials Processing; Heat and Mass Transfer in Biotechnology; Low Temperature Heat Transfer; Environmental Heat Transfer; Heat Transfer Education; Visualization of Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4358-1 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


The extraction of functional components from natural plant is one of important processing in the development and further practical application of plant product. Microwave assisted extraction (MAE) has been widely used in the extraction of many samples for its unique heating mechanism, short extraction time and high yield of extract. Astragalus slice is a special and typical plant porous media. We describe an approach by scanning electronic microscope (SEM) to characterize the trachea and aperture of Astragalus slices irradiated 20 min by microwave at 600 W and 900 W, with the aim to analyze the effect of the microwave power on the extraction yield by SEM and discuss further the relationship between the microstructure characteristics of sample and mechanism on mass transfer in micro-scale. It is found that extract with the 20 min irradiation of microwave at 600 W is higher than that at 900 W because the apertures on the trachea wall remain open at 600 W, but shrink at 900 W. Moreover, we confirm the important role of the aperture in the extraction of plant materials. Therefore, this study has significant meanings to develop the optimized extraction technology of plant porous media and maintain or improve the quality of extract.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In