0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Research on Steady Coupling of Neutronics and Thermal-Hydraulics for a Molten Salt Reactor

[+] Author Affiliations
Dalin Zhang, Changliang Liu, Libo Qian, Guanghui Su, Suizheng Qiu

Xi’an Jiaotong University, Xi’an, China

Paper No. ICONE16-48096, pp. 95-105; 11 pages
doi:10.1115/ICONE16-48096
From:
  • 16th International Conference on Nuclear Engineering
  • Volume 3: Thermal Hydraulics; Instrumentation and Controls
  • Orlando, Florida, USA, May 11–15, 2008
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-4816-7 | eISBN: 0-7918-3820-X
  • Copyright © 2008 by ASME

abstract

The Molten Salt Reactor (MSR), which is one of the ‘Generation IV’ concepts, can be used for production of electricity, actinide burning, production of hydrogen, and production of fissile fuels. In this paper, a single-liquid-fueled MSR was selected for conceptual research. For this MSR, a ternary system of 15%LiF-58%NaF-27%BeF2 was proposed as the reactor fuel solvent, coolant and also moderator with ca. 1 mol% UF4 dissolving in it, which circulates through the whole primary loop accompanying fission reaction only in the core. The fuel salt flow makes the MSR different from the conventional reactors using solid fissile materials, and makes the neutronics and thermal-hydraulic coupled strongly, which plays the important role in the research of reactor safety analysis. Therefore, it’s necessary to study the coupling of neutronics and thermal-hydraulic. The theoretical models of neutronics and thermal-hydraulics under steady condition were conducted and calculated by numerical method in this paper. The neutronics model consists of two group neutron diffusion equations for fast and thermal neutron fluxes, and balance equations for six-group delayed neutron precursors considering flow effect. The thermal-hydraulic model was founded on the base of the fundamental conservation laws: the mass, momentum and energy conservation equations. These two models were coupled through the temperature and heat source. The spatial discretization of the above models is based on the finite volume method (FVM), and the thermal-hydraulic equations are computed by SIMPLER algorithm with domain extension method on the staggered grid system. The distribution of neutron fluxes, the distribution of the temperature and velocity and the distribution of the delayed neutron precursors in the core were obtained. The numerical calculated results show that, the fuel salt flow has little effect to the distribution of fast and thermal neutron fluxes and effective multiplication factor; however, it affects the distribution of the delayed neutron precursors significantly, especially long-lived one. In addition, it could be found that the delayed neutron precursors influence the neutronics slightly under the steady condition, and the flow could remove the heat generated by the neutron reactions easily to ensure the reactor safe. The obtained results serve some valuable information for the research and design of this new generation reactor.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In