0

Full Content is available to subscribers

Subscribe/Learn More  >

Dropwise Condensation on Surfaces With Graded Hydrophobicity

[+] Author Affiliations
Richard W. Bonner, III

Advanced Cooling Technologies, Inc., Lancaster, PA

Paper No. HT2009-88516, pp. 491-495; 5 pages
doi:10.1115/HT2009-88516
From:
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 3: Combustion, Fire and Reacting Flow; Heat Transfer in Multiphase Systems; Heat Transfer in Transport Phenomena in Manufacturing and Materials Processing; Heat and Mass Transfer in Biotechnology; Low Temperature Heat Transfer; Environmental Heat Transfer; Heat Transfer Education; Visualization of Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4358-1 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

Dropwise condensation has shown the ability to increase condensation heat transfer coefficients by an order of magnitude over filmwise condensation. In standard dropwise condensation, liquid droplets forming on a sub-cooled nonwetting surface are removed from the surface by gravitational forces when the droplets reach a critical mass. The dependence on gravity for liquid removal limits the utilization of dropwise condensation in low gravity aerospace applications and horizontal surfaces. Presented in this study is a novel passive mechanism to remove droplets from a condensing surface using a surface energy gradient (wettability gradient) on the condensing surface. The wettability gradient creates a difference in contact angle across droplets condensing on the surface. The difference in contact angle across the droplets causes motion of the droplets to regions of increased wettability, without relying on additional forces. The movement of droplets away from the surface prevents flooding and allows for the condensation of new droplets on the surface. This paper presents an overall description of the wettability gradient mechanism and experimental condensation data acquired on surfaces with wettability gradients. A mechanism for creating the wettability gradients is also described, which involves varying the surface concentration of hydrophobic molecules through a self-assembled monolayer process.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In