0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis of a Metal Hydride Reactor With Embedded Heat Pipes to Enhance Heat Transfer Characteristics

[+] Author Affiliations
Joon Hong Boo, Young Hark Park

Korea Aerospace University, Goyang, Gyeonggi, Republic of Korea

Masafumi Katsuta, Sang Chul Bae

Waseda University, Tokyo, Japan

Paper No. HT2009-88454, pp. 409-416; 8 pages
doi:10.1115/HT2009-88454
From:
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 3: Combustion, Fire and Reacting Flow; Heat Transfer in Multiphase Systems; Heat Transfer in Transport Phenomena in Manufacturing and Materials Processing; Heat and Mass Transfer in Biotechnology; Low Temperature Heat Transfer; Environmental Heat Transfer; Heat Transfer Education; Visualization of Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4358-1 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

Numerical analysis was conducted for a heat pipe application in a metal hydride (MH) reactor for hydrogen gas storage. The hydriding and dehydriding characteristics of MH strongly depend on temperature and pressure. Due to its extremely low thermal conductivity however, it is very difficult to control the temperature of MH, especially when it is of vast bulk as in an MH reactor. This study deals with heat pipes embedded into the MH to increase the effective thermal conductivity of the system and thus to enhance the thermal control characteristics. The existing model was a brine-tube type MH reactor having cylindrical container with outer diameter of 76 mm and length of 1 m, which was partially filled with 8 to 10 kg of MH material. The hydriding and dehydriding processes occur at 10°C and 80°C, respectively. The heat-pipe type reactor model replaced the brine tubes and channels with copper-water heat pipes of the same dimensions. Three-dimensional numerical analysis predicted that the heat-pipe type MH reactor model enhanced thermal performance with faster response to the change of boundary conditions and higher degree of isothermal characteristics. Discussion is presented based on the numerical results of the two models compared with experimental results.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In