0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance Improvement in Pulsating Heat Pipes Using a Self-Rewetting Fluid

[+] Author Affiliations
K. Fumoto

Kushiro National College of Technology, Kushiro, Japan

M. Kawaji

University of Toronto, Toronto, Canada

Paper No. HT2009-88340, pp. 359-365; 7 pages
doi:10.1115/HT2009-88340
From:
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 3: Combustion, Fire and Reacting Flow; Heat Transfer in Multiphase Systems; Heat Transfer in Transport Phenomena in Manufacturing and Materials Processing; Heat and Mass Transfer in Biotechnology; Low Temperature Heat Transfer; Environmental Heat Transfer; Heat Transfer Education; Visualization of Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4358-1 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

New experimental results have been obtained on the enhancement of heat transport by a pulsating heat pipe (PHP) using a self-rewetting fluid. Self-rewetting fluids have a property that the surface tension increases with temperature unlike other common liquids. The increasing surface tension at a higher temperature could cause the liquid to be drawn towards a heated surface if a dry spot appears, and improving boiling heat transfer. In the present experiments, 1-butanol was added to water at a concentration of less than 1 wt% to make the self-rewetting fluid. A pulsating heat pipe made from an extruded multi-port tube was partially filled with the butanol-water mixture and tested for its heat transport capability at different input power levels. The experiments showed that the maximum heat transport capability was enhanced by a factor of four when the maximum heater temperature was limited to 120 °C. Thus, the use of a self-rewetting fluid in a PHP has been shown to be highly effective in improving the heat transport capability of pulsating heat pipes.

Copyright © 2009 by ASME
Topics: Fluids , Heat pipes

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In