0

Full Content is available to subscribers

Subscribe/Learn More  >

CFD Study for Air Distribution in Hydrogen Reformer Furnace

[+] Author Affiliations
Ping Zhou

Purdue University Calumet, Hammond, IN; Central South University, Changsha, China

Bin Wu, Yuzhu Hu, Dezhi Zheng, Chenn Q. Zhou

Purdue University Calumet, Hammond, IN

Jeff Fleitz, Robert Trajkovski

BP Corp., Whiting, IN

Paper No. HT2009-88620, pp. 183-191; 9 pages
doi:10.1115/HT2009-88620
From:
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 3: Combustion, Fire and Reacting Flow; Heat Transfer in Multiphase Systems; Heat Transfer in Transport Phenomena in Manufacturing and Materials Processing; Heat and Mass Transfer in Biotechnology; Low Temperature Heat Transfer; Environmental Heat Transfer; Heat Transfer Education; Visualization of Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4358-1 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

The uniform flow rate is a fundamental requirement in the design of air distributors for the hydrogen reformer furnace. Constraints of flow rate primarily demands on configuration of air distributors. Particularly for the air with different temperature, velocity and pressure, an even distribution of air distributors is especially important. Air distributors containing one inlet and eleven outlets are connected with burners so that uniform flow rate of each outlet is required. Based on CFD (Computational Fluid Dynamics) method, temperature, velocity and pressure distribution in the air distributors are simulated. The results show that flow rate is sensitive to the rate of pressure and velocity change but not for temperature change. The maldistribution of each outlet cannot accord with engineering standard. So, it is necessary to take some methods to decrease the maldistribution of each outlet. The dampers exist at each outlet are controlled individually. Hence, the flow rate can be constrained by adjust pressure according to the proportion of maldistribution.

Copyright © 2009 by ASME
Topics: Furnaces , Hydrogen

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In