0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Initial Velocity Field on Smoke Diffusion Characteristic in Subway Tunnel

[+] Author Affiliations
Hui Yang

Beijing University of Civil Engineering and Architecture, Beijing, China

Li Jia, Lixin Yang

Beijing Jiaotong University, Beijing, China

Paper No. HT2009-88439, pp. 145-150; 6 pages
doi:10.1115/HT2009-88439
From:
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 3: Combustion, Fire and Reacting Flow; Heat Transfer in Multiphase Systems; Heat Transfer in Transport Phenomena in Manufacturing and Materials Processing; Heat and Mass Transfer in Biotechnology; Low Temperature Heat Transfer; Environmental Heat Transfer; Heat Transfer Education; Visualization of Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4358-1 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

In this paper, piston wind effect on smoke diffusion characteristic in subway tunnel is studied by using three-dimensional transient computational fluid dynamics (CFD) method. In the first simulation case, fire disaster is simulated with homogeneous resting initial field condition. In the second simulation case, the train’s decelerating process till stopping in the tunnel is simulated for getting three-dimensional tunnel air velocity field distribution. Then the final heterogeneous air velocity field when the train stops in the tunnel is taken as initial field condition and the same fire scenario as the first case is simulated again. The data obtained under both initial conditions are compared by detecting people evacuation safety and the influence of initial air velocity field is analyzed. The results show that the inertial air velocity field caused by train’s movement has significant influence on smoke diffusion at the first few minutes of fire disaster, which is the key time for people’s evacuation. The adopted method in this paper and the simulation result could be used in establishing more effective subway fire evacuation plan.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In