Full Content is available to subscribers

Subscribe/Learn More  >

Modelling Radiative Heat Transfer in Oxycoal Combustion

[+] Author Affiliations
Rachael Porter, Mohamed Pourkashanian, Alan Williams

University of Leeds, Leeds, UK

David Smith

Doosan Babcock Energy Limited, Renfrew, UK

Paper No. HT2009-88392, pp. 105-114; 10 pages
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 3: Combustion, Fire and Reacting Flow; Heat Transfer in Multiphase Systems; Heat Transfer in Transport Phenomena in Manufacturing and Materials Processing; Heat and Mass Transfer in Biotechnology; Low Temperature Heat Transfer; Environmental Heat Transfer; Heat Transfer Education; Visualization of Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4358-1 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


The reduction of greenhouse gas emissions is essential to mitigate the impact of energy production from fossil fuels on the environment. Oxyfuel technology is a process developed to reduce emissions from power stations by removing nitrogen from air and burning the fossil fuels in a stream of pure oxygen. The remaining oxidiser is composed of recycled flue gas from the furnace to reduce temperatures. The product of this system is a flue gas with very high carbon dioxide concentration enabling more efficient capture and storage. Accurate modelling of oxyfuel is essential to gain better understanding of the combustion fundamentals and obtain accurate predictions of properties within the furnace that cannot be measured. Heat transfer to the furnace walls will be affected due to the different composition of the gases in the furnace. Carbon dioxide has higher heat capacity than nitrogen. Water vapour and carbon dioxide also exhibit absorption spectra of radiation in the infra-red region of the spectrum relating to wavelengths observed in combustion. Accurate CFD modelling of radiative heat transfer in oxyfuel combustion will require improvements to the radiative properties model to account for the spectral nature of radiation. In addition the impact of the solid fuel particles, soot and ash are considered. Several different radiative properties models have been tested to assess the impact on the predicted radiation and temperatures under air and oxy firing conditions. The results for radiation transferred to the walls are highly dependent upon the model chosen and the need for an accurate radiative properties model for oxyfuel firing, such as the full-spectrum k-distribution method is demonstrated.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In