Full Content is available to subscribers

Subscribe/Learn More  >

An Investigation Into the Causes of Transient Particulate Matter Spikes in Production Diesel Engines

[+] Author Affiliations
Indranil Brahma

Bucknell University, Lewisburg, PA

Paper No. ICEF2011-60147, pp. 765-783; 19 pages
  • ASME 2011 Internal Combustion Engine Division Fall Technical Conference
  • ASME 2011 Internal Combustion Engine Division Fall Technical Conference
  • Morgantown, West Virginia, USA, October 2–5, 2011
  • ISBN: 978-0-7918-4442-7
  • Copyright © 2011 by ASME


Particulate matter spikes occurring during transient engine operation have important health implications. This paper investigates the root cause of particulate matter spikes in modern electronically controlled diesel engines that impose strict fuel-Oxygen ratio limits during the turbocharger lag period. It is proposed that these spikes can be significantly reduced by improved estimation of transient charge flow through the engine. Through transient data analysis and with the aid of transient data based empirical models, it has been shown that the fuel-Oxygen ratio restrictions imposed by contemporary engine controllers are ineffective during transients because of temporary but large differences between exhaust and intake manifold pressures during aggressive transients resulting in inaccurate volumetric efficiency and charge flow estimation. Steady state experiments with artificially generated high engine manifold pressure differentials have been conducted to support this hypothesis. The engine manifold pressure differential hypothesis is a consequence of previous investigations to explain the baffling inability of empirical data based models to predict the magnitudes of transient particulate matter spikes. Accurate volumetric efficiency estimation during transients can make the fuel-Oxygen ratio limits more effective at reducing opacity spikes. It would also make model based transient calibration more useful by increasing the accuracy of particulate matter models and by directing any dynamic optimization process to mould calibratable surfaces to minimize engine manifold pressure differential spikes. Fuel efficiency benefits due to lower pumping losses during transients and lower regeneration penalties would also result.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In