0

Full Content is available to subscribers

Subscribe/Learn More  >

Advanced Metal Substrate Technology for Large Engine Exhaust Gas Aftertreatment Systems

[+] Author Affiliations
Markus Downey, Ulrich Pfahl

Emitec Inc., Rochester Hills, MI

Paper No. ICEF2011-60096, pp. 601-610; 10 pages
doi:10.1115/ICEF2011-60096
From:
  • ASME 2011 Internal Combustion Engine Division Fall Technical Conference
  • ASME 2011 Internal Combustion Engine Division Fall Technical Conference
  • Morgantown, West Virginia, USA, October 2–5, 2011
  • ISBN: 978-0-7918-4442-7
  • Copyright © 2011 by ASME

abstract

In the coming years non-road and locomotive diesel engine exhaust gas emissions will become regulated by EPA Tier4 legislation. The stringent emission limits of Tier 4 will require the use of aftertreatment technology currently being used in on-road applications. Based on the potentially large displacements of these engines, the aftertreatment systems will be large and expensive. The flow restriction that is added by the aftertreatment system will result in additional engine pumping work and lower fuel efficiency. The high durability requirements that are demanded of the aftertreatment systems is another factor that needs to be considered. Technologies that reduce complexity, size and cost of the aftertreatment system and minimize incremental fuel consumption are needed. Metal substrate technology offers a number of solutions for the challenges in meeting Tier 4 legislation. The substrates can be used for oxidation catalysts, selective catalytic reduction and slip catalysts depending on what kind of coating is applied to them. The thin wall technology that metal substrates can offer, even at coarse cell densities and lack of required retention mat for system integration provides more open frontal area, leading to lower flow restriction and lower fuel consumption. When designing a modular exhaust system, the shape flexibility will allow for denser packaging of the catalysts. This maximizes the amount of available cross-sectional area, leading to a most compact exhaust system and again better fuel efficiency. Large diameter catalysts can be manufactured in one piece, rather than being joined together from several pieces. A more robust substrate is the outcome.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In