0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of a Partially-Premixed Combustion Strategy for a Low-Emission, Direct Injection High Efficiency Natural Gas Engine

[+] Author Affiliations
S. R. Munshi, G. P. McTaggart-Cowan, J. Huang, P. G. Hill

Westport Power Inc., Vancouver, BC, Canada

Paper No. ICEF2011-60181, pp. 515-528; 14 pages
doi:10.1115/ICEF2011-60181
From:
  • ASME 2011 Internal Combustion Engine Division Fall Technical Conference
  • ASME 2011 Internal Combustion Engine Division Fall Technical Conference
  • Morgantown, West Virginia, USA, October 2–5, 2011
  • ISBN: 978-0-7918-4442-7
  • Copyright © 2011 by ASME

abstract

A heavy-duty engine was modified to operate on natural gas using a partially-premixed charge strategy. The 15 L engine used a production natural gas fuelling system which was capable of providing direct injections of natural gas and diesel at high pressure during the intake stroke and around TDC of the compression stroke. The engine’s compression ratio was reduced to 15.3:1 to maximize load without exceeding the peak cylinder pressure or encountering knock. A multi-mode strategy for the natural gas injection was used: at part-load the injection occurred during the intake stroke, generating a premixed charge, while at high load a second injection was added around TDC to generate a non-premixed combustion phase. Using this strategy, loads up to 19 bar BMEP were achieved with brake efficiencies of nearly 40% and NOx emissions below 0.29 g/kWh. The key parameters needed to achieve the target load without knock were EGR level, premixed EQR, and intake manifold temperature. At high load, smoke emissions were significant, while at part load, high efficiency and low NOx were achieved but unburned fuel emissions increased. CFD simulation results indicated that the part-load barriers were a result of slow flame propagation through the lean premixed mixture. The modelling suggested that methods to overcome this could include partial-premixing and increased turbulence during the later stages of the combustion.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In