Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental and Modeling-Based Study Into the Ignition Delay Characteristics of Diesel Surrogate Binary Blend Fuels

[+] Author Affiliations
Matthew A. Carr, Patrick A. Caton, Leonard J. Hamilton, Jim S. Cowart

U.S. Naval Academy, Annapolis, MD

Marco Mehl, William J. Pitz

LLNL, Livermore, CA

Paper No. ICEF2011-60027, pp. 95-108; 14 pages
  • ASME 2011 Internal Combustion Engine Division Fall Technical Conference
  • ASME 2011 Internal Combustion Engine Division Fall Technical Conference
  • Morgantown, West Virginia, USA, October 2–5, 2011
  • ISBN: 978-0-7918-4442-7
  • Copyright © 2011 by ASME


This study examines the combustion characteristics of a binary mixture surrogate for possible future diesel fuels using both a single-cylinder research engine and a homogeneous reactor model using detailed chemical reaction kinetics. Binary mixtures of a normal straight-chain alkane (pure n-hexadecane, also known as n-cetane, C16 H34 ) and an alkyl aromatic (toluene, C7 H8 ) were tested in a single-cylinder research engine. Pure n-hexadecane was tested as a baseline reference, followed by 50%, 70%, and 80% toluene in hexadecane blends. Testing was conducted at fixed engine speed and constant indicated load. As references, two conventional petroleum-based fuels (commercial diesel and US Navy JP-5 jet fuel) and five synthetic Fischer-Tropsch-based fuels were also tested. The ignition delay of the binary mixture surrogate increased with increasing toluene fraction and ranged from approximately 1.3 ms (pure hexadecane) to 3.0 ms (80% toluene in hexadecane). While ignition delay changed substantially, the location of 50% mass fraction burned did not change as significantly due to a simultaneous change in the premixed combustion fraction. Detailed chemical reaction rate modeling using a constant pressure, adiabatic, homogeneous reactor model predicts a chemical ignition delay with a similar trend to the experimental results, but shorter overall magnitude. The difference between this predicted homogeneous chemical ignition delay and the experimentally observed ignition delay is defined as the physical ignition delay due to processes such as spray formation, entrainment, mixing, and vaporization. On a relative basis, the addition of 70% toluene to hexadecane causes a nearly identical relative increase in both physical and chemical ignition delay of approximately 50%. The chemical kinetic model predicts that, even though the addition of toluene delays the global onset of ignition, the initial production of reactive precursors such as HO2 and H2 O2 may be faster with toluene due to the weakly bound methyl group. However, this initial production is insufficient to lead to wide-scale chain branching and ignition. The model predicts that the straight-chain alkane component (hexadecane) ignites first, causing the aromatic component to be consumed shortly thereafter. Greater ignition delay observed with the high toluene fraction blends is due to consumption of OH radicals by toluene. Overall, the detailed kinetic model captures the experimentally observed trends well and may be able to provide insight as to the relationship between bulk properties and physical ignition delay.

Copyright © 2011 by ASME
Topics: Fuels , Modeling , Delays , Diesel , Ignition



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In