Full Content is available to subscribers

Subscribe/Learn More  >

The Heat Transfer Characteristics of a 16 kW Steam Driven Double Effect Absorption Chiller

[+] Author Affiliations
Hongxi Yin, David H. Archer, Ming Qu

Carnegie Mellon University, Pittsburgh, PA

Paper No. ES2008-54209, pp. 637-649; 13 pages
  • ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences
  • ASME 2008 2nd International Conference on Energy Sustainability, Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4319-2 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME


A 16 kW (4.6 refrigerant tons) steam driven, double effect, parallel flow absorption chiller has been designed, manufactured, and installed in the Intelligent Workplace (IW) of Carnegie Mellon University (CMU). This chiller is driven by 6 bar saturated steam and uses a 57% LiBr-H2 O sorbent. It is the smallest absorption chiller available in the existing market. The absorption chiller consists of five major and four minor heat transfer components. The manufacturer of the chiller has provided information on detailed configuration and dimensions of these components to support the calculation of their heat transfer areas, A’s, and the estimation of overall heat transfer coefficients, U’s. A steady state computational performance model for the chiller has been developed based on the applicable scientific and engineering principles. The model has been used to calculate all chiller internal working conditions and to analyze the experimental data over a wide range of operating conditions. Heat transfer coefficients inside and outside of the tubes making up the chiller’s heat transfer components have been estimated by published empirical correlations. The product of the overall heat transfer coefficient and the surface contact area, UA’s, for the 5 major heat transfer components have been estimated using the chiller model and measured performance data. Significant variations, 30%, in this parameter are observed under partial load, reduced flow conditions. Deviations between the experimental measurements and the model solutions have been analyzed to evaluate the model accuracy. At design operating conditions, the overall deviation is about 6%.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In