0

Full Content is available to subscribers

Subscribe/Learn More  >

Dielectric and Piezoelectric Ceramics for High Temperature Applications

[+] Author Affiliations
Natthaphon Raengthon, Jason Nikkel, Troy Ansell, David P. Cann

Oregon State University, Corvallis, OR

Paper No. MSEC2011-50263, pp. 9-13; 5 pages
doi:10.1115/MSEC2011-50263
From:
  • ASME 2011 International Manufacturing Science and Engineering Conference
  • ASME 2011 International Manufacturing Science and Engineering Conference, Volume 2
  • Corvallis, Oregon, USA, June 13–17, 2011
  • ISBN: 978-0-7918-4431-1
  • Copyright © 2011 by ASME

abstract

Perovskite materials have been widely embedded in many consumer and industrial electronics, both for capacitor applications in the case of dielectric materials, and for actuator, transducer and sensor applications in the case of piezoelectric materials. Functional devices used in high temperature environments, such as deep oil well instrumentation, geothermal exploration, and devices for aerospace applications require the persistence of materials’ properties at high temperatures. In this paper, high potential capacitor and piezoelectric ceramics for high temperature applications are presented. High dielectric constant (K) materials based on 0.8BaTiO3 – 0.2Bi(Zn1/2 Ti1/2 )O3 solid solutions have been shown to have superior properties for high temperature capacitor applications. Studies of the temperature dependence of the dielectric properties have shown that the composition with Ba vacancies exhibits a high relative permittivity (εr > 1150) and a low dielectric loss (tan δ < 0.05) that persist up to a temperature of 460 °C. This composition also shows a high resistivity in excess of 7.0 × 1010 Ω-cm which remains unchanged up to a temperature of 270 °C as well as a large RC time constant (RC > 20 s). In the case of high temperature piezoelectric ceramics, solid solutions of PbTiO3 – BiScO3 – Bi(M1/2 Ti1/2 )O3 ternary systems were studied, where M is Mg and Zn. The ratio of BiScO3 to Bi(M1/2 Ti1/2 )O3 was kept at 1:1, while the concentration of PbTiO3 was varied. X-ray diffraction patterns showed that tetragonal symmetry was observed in compositions which contain a high concentration of PbTiO3 (> 60 mol%). Evidence of a morphotropic phase boundary (MPB) was observed with compositions containing PbTiO3 in the range of 52–56 mol%. At 70 mol% PbTiO3 compositions, high Curie temperatures (TC ) of 490 °C and 533 °C were observed for compositions containing Mg and Zn, respectively.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In