Full Content is available to subscribers

Subscribe/Learn More  >

A Method to Quantify Mixing in a Two Component Fluidized Bed

[+] Author Affiliations
Norman K. Keller, Theodore J. Heindel

Iowa State University, Ames, IA

Paper No. FEDSM-ICNMM2010-30369, pp. 275-282; 8 pages
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting: Volume 2, Fora
  • Montreal, Quebec, Canada, August 1–5, 2010
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4949-1 | eISBN: 978-0-7918-3880-8
  • Copyright © 2010 by ASME


Fluidized bed technology can be used for pyrolysis and gasification of solid fuel particles such as biomass, which is important to industry because of its potential as an alternative for petroleum-based fuels. To efficiently utilize a fluidized bed reactor it is necessary, among other factors, to investigate the mixing and segregation behavior of the fuel particles with the bed material. In order to characterize the material distribution, a technique to visualize the biomass inside a fluidized bed reactor has been developed using X-ray computed tomography (CT) scans. This paper presents an image analysis procedure that can be used to quantify and characterize the local mixing and segregation in a 3D fluidized bed.

Copyright © 2010 by ASME
Topics: Fluidized beds



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In