0

Full Content is available to subscribers

Subscribe/Learn More  >

Flow Visualization Techniques for the Evaluation of Non-Contact Trace Contraband Detectors

[+] Author Affiliations
Matthew Staymates, Greg Gillen, Robert Fletcher

National Institute of Standards and Technology, Gaithersburg, MD

Wayne Smith

DDL OMNI Engineering, McLean, VA

Richard Lareau

Transportation Security Lab, Atlantic City, NJ

Paper No. FEDSM-ICNMM2010-31028, pp. 203-209; 7 pages
doi:10.1115/FEDSM-ICNMM2010-31028
From:
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting: Volume 2, Fora
  • Montreal, Quebec, Canada, August 1–5, 2010
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4949-1 | eISBN: 978-0-7918-3880-8

abstract

Efforts are underway in the Surface and Microanalysis Science Division at the National Institute of Standards and Technology to study trace aerodynamic sampling of contraband materials (explosives or narcotics) in non-contact trace detection systems. Trace detection systems are designed to screen people, personal items, and cargo for particles that have contaminated surfaces. In a typical implementation of people screening, a human subject walks into a confined space where they are interrogated by a series of pulsed air jets and are screened for contraband materials by a chemical analyzer. The screening process requires particle and vapor removal, transport, collection, desorption, and detection. Aerodynamic sampling is the critical front-end process for effective detection. In this paper, a number of visualization techniques are employed to study non-contact aerodynamic sampling in detail. Particle lift-off and removal is visualized using high-speed videography, transport of air and particles by laser light scattering, and desorption surface heating and cooling patterns by infrared thermography. These tools are used to identify sampling inefficiencies and may be used to study next-generation screening approaches for aerodynamic sampling of particles and vapors.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In