0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of Unsteady Gas Flow Generator for Evaluating the Dynamic Characteristic of Respiratory Gaseous Flow Meter

[+] Author Affiliations
Tatsuya Funaki

National Metrology Institute of Japan, AIST, Tsukuba, Ibaraki, Japan

Paper No. FEDSM-ICNMM2010-30748, pp. 185-192; 8 pages
doi:10.1115/FEDSM-ICNMM2010-30748
From:
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting: Volume 2, Fora
  • Montreal, Quebec, Canada, August 1–5, 2010
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4949-1 | eISBN: 978-0-7918-3880-8
  • Copyright © 2010 by ASME

abstract

Respiratory gaseous flow measurement is one of an unsteady gas flow measurement and becoming very important. It has a wide field of application, for example, a measurement of lung function, an evaluation of respiratory gas exchange, a grasp of medical condition and so on. Especially, the evaluation of the absolute quantity and the analysis of the breathing waveform pattern are very important in the respiratory gaseous flow measurement. However, the dynamic characteristics of the respiratory gaseous flow meter has not been quantitatively measured and evaluated in the actual unsteady flows. There is substantial literature dealing with the measurement of unsteady gas flow. Most of these studies generated unsteady mass flows by using piston cylinders. Clearly, in these studies, substantial efforts must have been required in order to minimize the sensitivity dependence of density fluctuation on pressure and temperature variations. On the other hand, the dynamic characteristic evaluation of the gaseous flow meter which reproduced the sinusoidal waveform with only a single frequency component in the measurement frequency band was typically enough. However, the respiratory airflow waveform with the various frequency components and the shapes is complicated. Moreover, we already know that the respiratory waveform pattern changes by a state of health and activities. To solve these problems, this paper deals with the development of unsteady gas flow generator for the various breathing waveform reproduction. At first, we carry out the survey on the respiratory gaseous flow. Based on the research background and the above mentioned survey, we develop and introduce the unsteady gas flow generator which can generate the various respiratory flows. And we show the effectiveness of the developed unsteady gas flow generator. Moreover, we conduct the performance evaluation of the developed unsteady gas flow generator and the uncertainty analysis.

Copyright © 2010 by ASME
Topics: Gas flow , Generators

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In