0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical and Experimental Investigations of Cavitating Flow in a Vertical Multi-Hole Injector Nozzle

[+] Author Affiliations
Zhixia He, Jing Bai, Qian Wang, Qingmu Mu, Yunlong Huang

Jiangsu University, Zhenjiang, Jiangsu, China

Paper No. FEDSM-ICNMM2010-30504, pp. 29-37; 9 pages
doi:10.1115/FEDSM-ICNMM2010-30504
From:
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting: Volume 2, Fora
  • Montreal, Quebec, Canada, August 1–5, 2010
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4949-1 | eISBN: 978-0-7918-3880-8
  • Copyright © 2010 by ASME

abstract

The presence of cavitation and turbulence in a diesel injector nozzle has significant effect on the subsequent spray characteristics. However, the mechanism of the cavitating flow and its effect on the subsequent spray is unclear because of the complexities of the nozzle flow, such as the cavitation phenomena and turbulence. A flow visualization experiment system with a transparent scaled-up vertical multi-hole injector nozzle tip was setup for getting the experimental data to make a comparison to validate the calculated results from the three dimensional numerical simulation of cavitating flow in the nozzle with mixture multi-phase cavitating flow model and good qualitative agreement was seen between the two sets of data. The critical conditions for cavitation inception were derived as well as the relationship between the discharge coefficient and non-dimensional cavitation parameter. After wards, the testified numerical models were used to analyze the effects of injection pressure, back pressure, cavitation parameter, Reynolds number, injector needle lift and needle eccentricity on the cavitating flow inside the nozzle. Combined with visual experimental results, numerical simulation results can clearly reveal the three-dimensional nature of the nozzle flow and the location and shape of the cavitation induced vapor distribution, which can help understand the nozzle flow better and eventually put forward the optimization ideas of diesel injectors.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In