0

Full Content is available to subscribers

Subscribe/Learn More  >

The Influence of Channel Orientation and Flow Rates on the Bubble Formation in a Liquid Cross-Flow

[+] Author Affiliations
Kamran Siddiqui

University of Western Ontario, London, ON, Canada

Wajid A. Chishty

National Research Council Canada, Ottawa, ON, Canada

Paper No. FEDSM-ICNMM2010-30395, pp. 13-17; 5 pages
doi:10.1115/FEDSM-ICNMM2010-30395
From:
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting: Volume 2, Fora
  • Montreal, Quebec, Canada, August 1–5, 2010
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4949-1 | eISBN: 978-0-7918-3880-8
  • Copyright © 2010 by ASME and Her Majesty The Queen in Right of Canada

abstract

For gas turbines burning liquid fuels, improving fuel spray and combustion characteristics are of paramount importance to reduce emission of pollutants, improve combustor efficiency and adapt to a range of alternative fuels. Effervescent atomization technique, which involves the bubbling of an atomizing gas through aerator holes into the liquid fuel stream, has the potential to give the required spray quality for gas turbine combustion. Bubbling of the liquid stream is presently used in a wide range of other applications as well such as spray drying, waste-water treatment, chemical plants, food processing and bio- and nuclear-reactors. In order to optimize control of the required aeration quality and thus the resulting spray quality over a wide range of operating conditions, it is important that the dynamics of bubble formation, detachment and downstream transport are well understood under these circumstances. The paper reports on an experimental study conducted to investigate the dynamics of gas bubbles in terms of bubble detachment frequency when injected from an orifice that is subjected to a liquid cross-flow. The experiments were conducted over a range of gas and liquid flow rates and at various orientations of the liquid channel. Analyses presented here are based on shadowgraph images of two-phase flow, acquired using a high speed camera and a low intensity light source. An image processing algorithm was developed for the detection and characterization of the bubble dynamics. Results show that bubble detachment frequency is a function of both liquid cross-flow rate and the gas-to-liquid flow rate ratio.

Copyright © 2010 by ASME and Her Majesty The Queen in Right of Canada

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In