0

Full Content is available to subscribers

Subscribe/Learn More  >

Droplet Measurement in a Rod Bundle Geometry for a Reflood Heat Transfer Test

[+] Author Affiliations
H. K. Cho, K. Y. Choi, S. Cho, C.-H. Song

Korea Atomic Energy Research Institute, Daejeon, Republic of Korea

Paper No. ICONE18-30286, pp. 1253-1261; 9 pages
doi:10.1115/ICONE18-30286
From:
  • 18th International Conference on Nuclear Engineering
  • 18th International Conference on Nuclear Engineering: Volume 4, Parts A and B
  • Xi’an, China, May 17–21, 2010
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4932-3
  • Copyright © 2010 by ASME

abstract

During the reflood phase of a postulated loss of coolant accident in a nuclear reactor, the entrainment of liquid droplets can occur at a quench front of reflooding water. It is widely recognized that the behavior of the entrained droplet crucially affects the reflood heat transfer phenomena by decreasing the superheated steam temperature and interacting with a rod bundle and spacer grids. For this reason, various experimental and numerical studies have been performed to examine droplet behavior such as the droplet size, velocity and droplet fraction inside a rod array. In this study, an experiment on the droplet behavior inside a heated rod bundle has been performed. The experiment was focused on the break-up of droplets induced by a spacer grid in a rod bundle geometry, which results in the increase of the interfacial heat transfer between droplets and superheated steam. A 6×6 rod bundle test facility in Korea Atomic Energy Research Institute was used for the experiment. Steam was supplied by an external boiler into the bottom of the test channel, and a droplet injection nozzle was equipped instead of simulating a quench front of reflooding water. The major measuring parameters of the experiment were the droplet size and velocity, and these were measured by a high-speed camera and a digital image processing technique. A series of experiments were conducted with various flow conditions of a steam injection velocity, heater temperature, droplet size and droplet flow rate. The experiments provided the data on the change of the Sauter mean diameter of droplets after collision with a spacer grid depending on flow conditions. Moreover, the data was analyzed with a droplet break-up model by a spacer grid which was implemented into a thermal hydraulic analysis code, COBRA-TF.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In