Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of the Effect of Parallel Rib-Type Roughness on Local, Single-Phase Heat Transfer in Rod Bundles by CFD: Part 1—Flow Resistance

[+] Author Affiliations
Leo Carrilho

Westinghouse Electric Co., Columbia, SC

Jamil Khan

University of South Carolina, Columbia, SC

Paper No. ICONE18-29731, pp. 723-727; 5 pages
  • 18th International Conference on Nuclear Engineering
  • 18th International Conference on Nuclear Engineering: Volume 4, Parts A and B
  • Xi’an, China, May 17–21, 2010
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4932-3
  • Copyright © 2010 by ASME


The applicability of artificial roughness in light-water reactors is investigated for the purpose of heat transfer improvement in fuel rod bundles. Since the roughening technique has a significant impact on friction losses, the investigation is divided in two distinct steps: flow resistance and convective heat transfer. The present paper deals with roughness effects on flow resistance. The technique consists of a multiplicity of small elements distributed on the surface of the simulated fuel rod. A parallel rib-type roughness is selected for this work for simplicity and since it has been extensively investigated in the past. Locally flow resistance is simulated using Computational Fluid Dynamics, CFD, in smooth and in rough rod bundles downstream of support grids with and without flow-enhancing features (vanes). This investigation is performed with basis on experimental testing. With model parameters established, various candidate roughness designs can evaluated for minimum flow resistance.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In