Full Content is available to subscribers

Subscribe/Learn More  >

Efficiency of Sulfoaluminate Cement for Solidification of Simulated Radioactive Borate Liquid Waste

[+] Author Affiliations
Qina Sun

Tsinghua University, Beijing; Environmental Management College of China, Qinhuangdao, China

Junfeng Li, Jianlong Wang, Qiang Li

Tsinghua University, Beijing, China

Shixi Ouyang, Minghui Wu

China Building Materials Academy, Beijing, China

Paper No. ICONE18-30154, pp. 559-564; 6 pages
  • 18th International Conference on Nuclear Engineering
  • 18th International Conference on Nuclear Engineering: Volume 1
  • Xi’an, China, May 17–21, 2010
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4929-3
  • Copyright © 2010 by ASME


To investigate the solidification efficiency of sulfoaluminate cement (SAC) and to provide more information for formula optimization, SAC blending zeolite, accelerator and Dura fiber was used as matrix materials for solidification of simulated radioactive borate liquid waste. The simulated radioactive borate liquid waste was prepared with boric acid and sodium hydroxide using drinking water. The performances of solidified waste forms were evaluated mainly basing on matrix compressive strength and leachability. The 28d compressive strength of the solidified waste forms were tested according to Chinese National Standard GB 14569.1-1993, and experiments on water/freezing/irradiation/impact resistance were also carried out. Nuclides Sr, Cs and Co were substituted by their non-radioactive isotopes respectively in leachability test, and the testing procedures were consistent with Chinese National Standard GB 7023-1986. Experimental results showed that it was feasible to solidify borated liquid wastes with SAC. The 28d compressive strength was 13.9MPa, nearly twice of the standard in GB 14569.1-1993. Strength losses in water/freezing/irradiation/impact resistance tests met the demands of GB 14569.1-1993 well. In the leaching test, the 42d leaching rates were 3.39×10−5 cm/d, 4.45×10−5 cm/d and 4.07×10−7 cm/d for Sr2+ , Cs+ and Co2+ respectively, much lower than GB 14569.1-1993 limits. Results of leaching test also showed that the leaching mechanism of Co2+ was different from that of Sr2+ and Cs+ .

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In