Full Content is available to subscribers

Subscribe/Learn More  >

An Analytical Method for Modeling Two-Phase Gravity-Driven Drainage Systems in BOP Applications

[+] Author Affiliations
Robert Stakenborghs, Michael L. Morgan, Jr.

ILD, Inc., Baton Rouge, LA

Paper No. ICONE18-30261, pp. 345-354; 10 pages
  • 18th International Conference on Nuclear Engineering
  • 18th International Conference on Nuclear Engineering: Volume 1
  • Xi’an, China, May 17–21, 2010
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4929-3
  • Copyright © 2010 by ASME


Two-phase gravity-driven drainage systems are used in many applications within nuclear power Balance of Plant (BOP) applications such as the drain lines for moisture separator re-heaters (MSRs) and feedwater heaters. Design of these systems is typically based on industry-oriented guidelines and operator-based experience. Changes in plant operation, such as uprates and equipment modification and/or replacement, are relatively common as plants seek to generate more power with greater efficiency. These plant modifications may inadvertently change system operation from design conditions and impose undesirable system transients. This paper seeks to provide a method for analyzing BOP drainage systems in an effort to characterize and mitigate drain flow transients. Previous methodologies diagnose and evaluate drain instability through measurement, empirical analysis, and operational experience. This paper identifies methods that can be utilized to generate computational models of discrete plant drainage systems that decrease the level of speculation involved in previous analyses. Additionally, a real-world application of this method is presented to demonstrate how computer modeling can accurately mimic plant transients.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In