0

Full Content is available to subscribers

Subscribe/Learn More  >

Morton Effect Induced Synchronous Instability in Mid-Span Rotor-Bearing Systems: Part 2—Models and Simulations

[+] Author Affiliations
Zenglin Guo, Gordon Kirk

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. DETC2010-28342, pp. 955-966; 12 pages
doi:10.1115/DETC2010-28342
From:
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 22nd International Conference on Design Theory and Methodology; Special Conference on Mechanical Vibration and Noise
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4413-7 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME

abstract

The mechanism of the Morton Effect induced synchronous instability has been discussed in Part 1, using an assumption of isotropic linear bearings. The second part of the current study will now focus on the more realistic systems, mid-span rotors supported by the hydrodynamic journal bearings. First, the models to calculate the thermal bending of the shaft and the temperature distribution across the journal surface are established. This can be used to calculate the equivalent thermal imbalance. The calculations of the temperature difference and its equivalent thermal imbalance using hydrodynamic plain journal bearing models are conducted and discussed with the comparison to the analytical results obtained in Part 1. It shows that the thermal imbalance induced by the Morton Effect may increase to the level of the mechanical imbalance and then its influence on the system stability should be included. The suggested thermal bending model also partially explain that the mid-span rotors are less liable to be influenced by the Morton Effect induced instability than are the overhung configurations, because of the restraining effect between two supports. Finally, a symmetric mid-span rotor–hydrodynamic journal bearing system is calculated to show its stability performance. The results show the inclusion of the Morton Effect may lead to an unstable operation of the system. Considering the existence of the oil film self-induced vibration due to the dynamic characteristics of fluid film bearings, the Morton Effect may make a further negative impact on the stability of the system. The simulation results of the unbalance response show that the Morton Effect changes the shapes of the whirling orbits and makes them no longer be the standard elliptical orbits around the static equilibriums.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In