Full Content is available to subscribers

Subscribe/Learn More  >

Evaluating the Impacts of Iteration on PD Processes by Transforming Task Network Models Into System Dynamics Models

[+] Author Affiliations
H. Nam Le, David C. Wynn, P. John Clarkson

University of Cambridge, Cambridge, UK

Paper No. DETC2010-28317, pp. 461-472; 12 pages
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 22nd International Conference on Design Theory and Methodology; Special Conference on Mechanical Vibration and Noise
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4413-7 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME


Iteration is unavoidable in the design process and should be incorporated when planning and managing projects in order to minimize surprises and reduce schedule distortions. However, planning and managing iteration is challenging because the relationships between its causes and effects are complex. Most approaches which use mathematical models to analyze the impact of iteration on the design process focus on a relatively small number of its causes and effects. Therefore, insights derived from these analytical models may not be robust under a broader consideration of potential influencing factors. In this article, we synthesize an explanatory framework which describes the network of causes and effects of iteration identified from the literature, and introduce an analytic approach which combines a task network modeling approach with System Dynamics simulation. Our approach models the network of causes and effects of iteration alongside the process architecture which is required to analyze the impact of iteration on design process performance. We show how this allows managers to assess the impact of changes to process architecture and to management levers which influence iterative behavior, accounting for the fact that these changes can occur simultaneously and can accumulate in non-linear ways. We also discuss how the insights resulting from this analysis can be visualized for easier consumption by project participants not familiar with simulation methods.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In