Full Content is available to subscribers

Subscribe/Learn More  >

A Dynamic Model for a Closed-Loop Continuous Energy System Using Solar Power

[+] Author Affiliations
Bradford M. Culwell, Shripad T. Revankar, Radhika Kotha

Purdue University

Paper No. IMECE2006-14550, pp. 389-397; 9 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Energy Conversion and Resources
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-4783-7 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


One key advantage of solar power over more traditional power sources is its modular nature, allowing it to be used in remote locations or as a supplementary source of power. Recent studies show fuel cell technology as a good means of providing a continuous supply of electricity from a solar array, eliminating drawbacks caused by solar energy's cyclical nature. The high power density of such a system makes it ideal for use in areas such as unmanned aerial vehicles and space exploration. Due to the complexity and relatively high initial cost of current fuel cells, however, optimization of such a system is critical. This paper examines a dynamic model of a solar regenerative fuel cell system built in MATLAB Simulink. The system uses a polymer electrolyte membrane (PEM) fuel cell, running on stored hydrogen and oxygen, to produce power when solar energy is insufficient. It uses a PEM based electrolyzer to produce hydrogen and oxygen from water when solar energy exceeds demand. The mathematical model includes modules for each component, including solar cells, fuel cell, electrolyzer, and auxiliary systems. Models were built based on fundamental physics to the extent practical. The individual modules were first tested for their performances and then were integrated to form an integrated solar powered regenerative fuel cell system. The simulations were carried out for a day and night cycle and the results show that the closed loop system can be operated providing continuous supply of electric power.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In