Full Content is available to subscribers

Subscribe/Learn More  >

An Object-Oriented Systems Engineering Model Design for Integrating Spent Fuel Treatment Facility and Chemical Separation Processes

[+] Author Affiliations
Ming Cheng, Matthew Hodges, Kenny Kwan, Hsuan-Tsung Hsieh, Yitung Chen

University of Nevada at Las Vegas

George Vandegrift, Jackie Copple, James Laidler

Argonne National Laboratory

Paper No. IMECE2006-15885, pp. 153-158; 6 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Energy Conversion and Resources
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-4783-7 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


The mission of the Transmutation Research Program (TRP) at University of Nevada, Las Vegas (UNLV) is to establish a nuclear engineering test bed that can carry out effective transmutation and advanced reactor research and development effort. TRPSEMPro package, developed from previous project period, integrated a chemical separation code from the Argonne National Laboratories (ANL). Current research focus has two folds: development of simulation system processes applied to Spent Fuel Treatment Facility (SFTF) using ASPEN-plus and further interaction of ASPEN+ program from TRPSEMPro interface. More details will be discussed below. ANL has identified three processes simulations using their separation technologies. The first process is to separate aqueous acid streams of acetic acid, nitric acid, water and a variety of fission product nitric salts. Distillation separation method is used to remove the desired components from the streams. The second simulation is to convert plutonium nitrate to plutonium metal. Steps used for the process simulation are precipitation, calcinations, fluorination and reduction. The third process currently under development is vitrification of fission product of raffinate streams. During the process, various waste streams from the plant are mixed and fed to a process that converts them to a solid state glass phase. The vitrification process used by the Hanford and Savannah River facilities was selected as a guideline to develop the prototype simulation process using ASPEN-Plus. Current research is focusing on identifying unit operations required to perform the vitrification of the waste streams. The first two processes are near completion stage. Microsoft Visual Basic (MS VB) has been used to develop the entire system engineering model package, TRPSEMPro. Currently a user friendly interface is under development to facilitate direct execution of ASPEN-plus within TRPSEMPro. The major purpose for the implementation is to create iterative interaction among system engineering modeling, ANL separation model and ASPEN-Plus process that outputs optimized separation/process simulation results. The ASPEN-plus access interface from TRPSEMPro allows users to modify and execute process parameters derived from the ASPEN Plus simulations without navigating through ASPEN-Plus. All ASPEN-plus simulation results can be also accessible by the interface. Such integration provide a single interaction gateway for researchers interested in SFTF process simulation without struggling with complicate data manipulation and joggling among various software packages.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In