0

Full Content is available to subscribers

Subscribe/Learn More  >

Three-Dimensional Finite Element Analysis of Mixed-Mode Interfacial Delamination for the Pull-Off Test

[+] Author Affiliations
Zuo Sun

The Boeing Company, Seattle, WA

David A. Dillard

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. IMECE2007-41291, pp. 633-641; 9 pages
doi:10.1115/IMECE2007-41291
From:
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 3: Design and Manufacturing
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4297-5 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME

abstract

A three-dimensional nonlinear finite element analysis model is presented to study mixed-mode interfacial delamination for a pull-off test consisting of a thin film strip debonded from a glass substrate. Since the strain energy release rates of all three modes (Mode I, Mode II, and Mode III) and the mode mixities vary along the width of the debond front, prediction of the in-situ shape of the debond front remains an interesting and challenging topic. A cohesive zone model is incorporated into the three-dimensional finite element model to predict the interfacial crack propagation profile for the film deformation regime ranging from bending plate to stretching membrane. This three-dimensional finite element model is found to provide additional insights for interfacial delamination for the pull-off test.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In