Full Content is available to subscribers

Subscribe/Learn More  >

Compressive Residual Stresses Effect on Fatigue Life of Rolling Bearings

[+] Author Affiliations
Spiridon S. Cretu, Marcelin I. Benchea

Technical University of Iasi, Iasi, Romania

Ovidiu S. Cretu

Tribo-Consult, Olympia, WA

Paper No. IMECE2007-43561, pp. 485-490; 6 pages
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 3: Design and Manufacturing
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4297-5 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME


The fatigue life tests carried out on two groups of ball bearings confirm the positive influence of the compressive residual stresses induced by a previous loading in the elastic-plastic domain. The values of residual stresses are numerically evaluated by employing a three-dimensional strain deformation analysis model. The model is developed in the frame of the incremental theory of plasticity by using the von Mises yield criterion and Prandtl-Reuss equations. To consider the material behaviour the Ramberg-Osgood stress-strain equation is involved and a nonlinear equation is considered to model the influence of the retained austenite. To attain the final load of each loading cycle the two bodies are brought into contact incrementally, so that for each new load increment the new pressure distribution is obtained as the solution of a constrained system of equation. Conjugate gradients method in conjunction with discrete convolution fast Fourier transform is used to solve the huge system of equations. Both the new contact geometry and residual stresses distributions, are further considered as initial values for the next loading cycle, the incremental technique being reiterated. The cyclic evaluation process of both plastic strains and residual stresses is performed until the material shakedowns. Comparisons of the computed residual stresses and deformed profiles with corresponding measured values reveal a good agreement and validate the analysis model. The von Mises equivalent stress, able to include both elastic and residual stresses, is considered in Ioannides-Harris rolling contact fatigue model to obtain theoretical lives of the ball bearings groups. The theoretical analysis reveals also greater fatigue lives for the ball bearings groups with induced residual stresses than the fatigue lives of the group without induced residual stresses.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In