Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of Chatter Vibrations in Reaming

[+] Author Affiliations
M. Sajjadi, M. R. Movahhedy

Sharif University of Technology, Tehran, Iran

Paper No. IMECE2007-43028, pp. 441-447; 7 pages
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 3: Design and Manufacturing
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4297-5 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME


A time domain approach is used to study the cutting conditions in reaming process that leads the system to regenerative chatter vibrations. The dynamic analysis of the system includes inertia of the tool, centripetal and Coriolis terms, damping and the first mode bending of reamer. A model of cutting forces proportional to chip cross sectional area and process damping proportional to cutting speed is considered. Numerical simulation based on the Euler integration scheme is carried out to obtain time domain solution of the equation. Despite linearization in force modelling, the model is nonlinear due to the change in the tool engagement area. Another nonlinearity included in the model jumping out of is the tool from cutting. The results of this model are presented and compared to the results of a linear model regenerated in time domain from previous works.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In