0

Full Content is available to subscribers

Subscribe/Learn More  >

Cutter-Workpiece Engagement Calculations by Parallel Slicing for Five-Axis Flank Milling of Jet Engine Impellers

[+] Author Affiliations
W. Ferry, D. Yip-Hoi

University of British Columbia, Vancouver, BC, Canada

Paper No. IMECE2007-41434, pp. 383-392; 10 pages
doi:10.1115/IMECE2007-41434
From:
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 3: Design and Manufacturing
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4297-5 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME

abstract

Cutter-workpiece engagement maps, or cutting flute entry/exit locations as a function of height, are a requirement for prediction of cutting-forces on the tool and workpiece in machining operations such as milling. This paper presents a new method of calculating tool-part intersection maps for five-axis flank milling of jet engine impellers with tapered ball-end mills. It is called the parallel slicing method (PSM) and is a semi-discrete solid modeling technique written in C++ using the ACIS B-rep solid modeling environment. Although it is tailored towards five-axis flank milling, it can also be applied to both planar and multi-axis milling processes. The tool swept envelope is generated and intersected with the workpiece to obtain the removal volume. The removal volume is then sliced into a number of parallel planes along a given axis and the intersection curves with the tool and each plane are determined analytically. The swept area between the intersection curves of successive tool moves is calculated by solving for the area enclosed by the tangent lines. This area is removed from the workpiece material, which deletes the material cut between tool moves. Finally, the intersection curves are compared with the planar slices of the updated part, which results in a series of arcs. The end points of these arcs are joined with linear segments to form the engagement polygon which is used to calculate the engagement maps. Using this method, cutter-workpiece engagement maps are generated for a five-axis flank milling toolpath on a prototype integrally bladed rotor (IBR) with a tapered ball-end mill. These maps are compared with those obtained from a benchmark cutter-workpiece engagement calculation method – the Manufacturing Automation Laboratory’s Virtual Machining Interface (MAL-VMI). The MAL-VMI uses an application programming interface (API) in a commercial NC verification software package to obtain cutter-part intersections through a fast, z-buffer technique. Overall, the parallel slicing method appears to obtain more accurate engagement zones than those given by the MAL-VMI, although the calculation time is longer.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In