Full Content is available to subscribers

Subscribe/Learn More  >

Instrumental Photon Activation and Applications in a Nuclear-Waste Inspection Purpose

[+] Author Affiliations
F. Jeanneau, M. Gmar, F. Lainé


N. Huot


A. Lyoussi, E. Payan


Ph. Pillot


L. Roux


N. Saurel


Paper No. ICEM2003-4765, pp. 1991-1999; 9 pages
  • ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation
  • 9th ASME International Conference on Radioactive Waste Management and Environmental Remediation: Volumes 1, 2, and 3
  • Oxford, England, September 21–25, 2003
  • Conference Sponsors: Nuclear Engineering Division and Environmental Engineering Division
  • ISBN: 0-7918-3732-7 | eISBN: 0-7918-3731-9
  • Copyright © 2003 by ASME


The development of non-destructive methods to inspect nuclear-waste containers is important for radioactive-waste management and non-proliferation purposes. This paper will present studies and results carried out by a method based on photon interrogation (photofission) which allows the determination of the actinide quantity contained in the waste. High-energy photons (produced by an electron accelerator associated with a Bremsstrahlung tungsten target) will induce photofission reactions on the actinides. Then the flux of delayed neutrons, which is directly proportional to the amount of actinides, is measured with 3 He detectors. Since the beginning of 1990’s, our team in CEA has been working on the development of this method and the improvement of the existing simulation code. The two main tools will be introduced: OPERA (tool for the simulation of photonuclear reactions) which includes photonuclear cross sections in a Monte-Carlo code based on MCNP4C, and SAPHIR (Irradiation and Photon-Activation System), a device allowing experimentations for research and development programs. The applications of these tools will be illustrated mainly with two examples: 1) The feasibility study of an inspection device for old concrete containers will be reported. Two campaigns of measurements have been performed in order to determine the sensitivity and the detection limits in the case of four different types of concrete containers, in terms of nature and geometry. 2) Nuclear-waste producers and managers have been interested by the active photon interrogation possibilities to measure actinide quantity in wastes of high activity, vitrified or compacted, with constraints like a dose rate around 400 Gy/h at 27 cm from the container. The simulation-code improvement has allowed some calculations, based on the SAPHIR facility, which have shown a good linearity between the actinide mass and the number of detected neutrons, in spite of a very high passive noise and the presence of a lead protection. Several R&D programs will be also presented. On one hand, measurements are performed on real wastes, chosen for parameter which could define a limitation of the measurements, in order to improve the method and to evaluate the detection limits. For instance, tomography can be performed with this experimental device: quantity and position of actinides in the waste can be calculated. On the other hand, a new method is studied, using the delayed-gamma flux in order to quantify and to identify the different actinide isotopes contained in the waste. These methods and device offer a large panel of results in terms of measurements and simulations. Our team is now involved in several prospecting and R&D programs in order to improve the current method and to find some new applications for nuclear-waste management.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In