Full Content is available to subscribers

Subscribe/Learn More  >

Direct Push Technology and Application to Vertical Profiling of Hydraulic Conductivity in Unconsolidated Formations

[+] Author Affiliations
Wesley McCall, Thomas M. Christy

Geoprobe Systems, Inc., Salina, KS

James J. Butler, Jr.

Kansas Geological Survey, Lawrence, KS

Paper No. ICEM2003-4590, pp. 1933-1938; 6 pages
  • ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation
  • 9th ASME International Conference on Radioactive Waste Management and Environmental Remediation: Volumes 1, 2, and 3
  • Oxford, England, September 21–25, 2003
  • Conference Sponsors: Nuclear Engineering Division and Environmental Engineering Division
  • ISBN: 0-7918-3732-7 | eISBN: 0-7918-3731-9
  • Copyright © 2003 by ASME


Direct push (DP) methods provide a cost-effective alternative to conventional rotary drilling for investigations in unconsolidated formations. DP methods are commonly used for sampling soil gas, soil and groundwater; installing small-diameter monitoring wells; electrical logging; cone penetration testing; and standard penetration tests. Most recently, DP methods and equipment for vertical profiling of formation hydraulic conductivity (K) have been developed. Knowledge of the vertical and lateral variations in K is integral to understanding contaminant migration and, therefore, essential to designing an adequate and effective remediation system. DP-installed groundwater sampling tools may be used to access discrete intervals of the formation to conduct pneumatic slug tests. A small-diameter (38mm OD) single tube protected screen device allows the investigator to access one depth interval per advancement. Alternatively, a larger diameter (54mm OD) dual-tube groundwater profiling system may be used to access the formation at multiple depths during a single advancement. Once the appropriate tool is installed and developed, a pneumatic manifold is installed on the top of the DP rod string. The manifold includes the valving, regulator, and pressure gauge needed for pneumatic slug testing. A small-diameter pressure transducer is inserted via an airtight fitting in the pneumatic manifold, and a data-acquisition device connected to a laptop computer enables the slug test data to be acquired, displayed, and saved for analysis. Conventional data analysis methods can then be used to calculate the K value from the test data. A simple correction for tube diameter has been developed for slug tests in highly permeable aquifers. The pneumatic slug testing technique combined with DP-installed tools provides a cost-effective method for vertical profiling of K. Field comparison of this method to slug tests in conventional monitoring wells verified that this approach provides accurate K values. Use of this new approach can provide data on three-dimensional variations in hydraulic conductivity at a level of detail that has not previously been available. This will improve understanding of contaminant migration and the efficiency and quality of remedial system design, and ultimately, should lead to significant cost reductions.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In