Full Content is available to subscribers

Subscribe/Learn More  >

Evaluation of Uncertainty Associated With Spatially Variable Properties

[+] Author Affiliations
Kazuyuki Kato

Tokyo Electric Power Company, Chiyoda, Tokyo, Japan

Tadashi Maeda

TEPCO Systems Corporation, Eitai, Japan

Hiroyasu Takase

Quintessa Japan, Yokohama, Japan

Paper No. ICEM2003-4561, pp. 1611-1616; 6 pages
  • ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation
  • 9th ASME International Conference on Radioactive Waste Management and Environmental Remediation: Volumes 1, 2, and 3
  • Oxford, England, September 21–25, 2003
  • Conference Sponsors: Nuclear Engineering Division and Environmental Engineering Division
  • ISBN: 0-7918-3732-7 | eISBN: 0-7918-3731-9
  • Copyright © 2003 by ASME


Uncertainties associated with spatially variable properties of geologic characteristics are especially important. However, these uncertainties cannot be specified in a deterministic manner because the process of formation or evolution of host rock is random and because the limited number of data is available for the statistic evaluation of this random process. We develop the hybrid model of fuzzy geostatistics for the appropriate treatment of uncertainties associated with spatially variable properties. For the application of the above method, we prepared the virtual field with heterogeneous hydraulic conductivity for the simulation of site characterization. In this simulation, we consider the situation that the limited number of boring data is available. The conventional method can determine only one variogram. In this case, uncertainties due to the ignorance are not appropriately handled and the degree of belief for the determined variogram is not specified. For the appropriate treatment of ignorance, we define the possible range of variogram in terms of fuzzy membership functions on the level of conservatism. A large number of heterogeneous hydraulic conductivity fields are realized by using corresponding variograms that sampled from the possible range of variogram. For each realized field, we compute the groundwater flow model and estimate the average flow velocity. Resulting many average flow velocities are processed by fuzzy rule to obtain the membership function of estimated average flow velocity. This can be used as the input data for the hybrid probabilistic and possibilistic safety assessment. Comparing with the previous work, the process of defining the membership function of average flow velocity becomes transparent and the reliability of safety assessment is enhanced.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In