0

Full Content is available to subscribers

Subscribe/Learn More  >

Optimization Features in Management of Salaspils Research Reactor Decommissioning Waste

[+] Author Affiliations
A. Dreimanis

Radiation Safety Centre

Paper No. ICEM2003-4522, pp. 1127-1136; 10 pages
doi:10.1115/ICEM2003-4522
From:
  • ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation
  • 9th ASME International Conference on Radioactive Waste Management and Environmental Remediation: Volumes 1, 2, and 3
  • Oxford, England, September 21–25, 2003
  • Conference Sponsors: Nuclear Engineering Division and Environmental Engineering Division
  • ISBN: 0-7918-3732-7 | eISBN: 0-7918-3731-9
  • Copyright © 2003 by ASME

abstract

Management of decommissioning waste is considered as complex task of seeking for optimal solution in the environment of various competing technical, safety and socio-economical factors. If from the formal mathematics viewpoint it is a multi-parameter optimization task, then for real conditions simplified approach for such problem should be applied. We propose to decompose this task into the set of optimization analysis for particular steps, and then in each step it is easier to find optimum. For the real case of management of radioactive waste arising from dismantling and decommissioning of Salaspils Research Reactor (SRR) we consider following main optimization steps: 1) the choice of the decommissioning concept — among three elaborated versions — with estimation of the foreseen radioactive waste amount for disposal, recycling and free release, taking into account also potential exposures and financial resources; 2) establishment of national radioactive waste management agency “RAPA” Ltd., ensuring common administration and maintenance of the shutdown SRR and radioactive waste (RW) disposal site — RAPA manages some decommissioning activities of SRR and shall actively participate together with envisaged decommissioning operator in this process also in future, but in all stages will keep full responsibility of waste management; 3) optimization of radioactive waste transportation: i) organizational aspects (packing, transportation time, schedule, route, etc.), ii) environmental safety control; 4) optimization arrangement of space for radioactive waste disposal: i) choice of the best strategy to ensure a new space, ii) optimization of the vault size — to be able accommodate decommissioning waste without being oversized; 5) strategy of treatment, conditioning and packing of solid decommissioning waste; 6) optimization of liquid decommissioning waste management — its conditioning together with the solid radioactive waste; 7) socio-economical optimization features: i) existing infrastructure for RW disposal, ii) financial compensation for local municipality, iii) international cooperation, technical and financial assistance by EU, IAEA, Sweden. The proposed optimization features used in the developing of Concept for radioactive waste management in Latvia for the period 2003–2010 (which corresponds to the approved decommissioning period of SRR) supplement existing separate optimization aspects of decommissioning waste management and could be considered as simplified integral set of factors for elaboration of optimal strategy for decommissioning waste management.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In